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Abstract. The growth of Bargmann functions is intimately connected to the density of the zeros
of these functions and to the completeness of sequences of coherent states. Using these ideas we
find the least density that a sequence of coherent states must have in order to be overcomplete
within the spaceH(ρ, σ ) of Bargmann functions of an order not exceedingρ (and of a type
not exceedingσ if of order ρ). These results generalize known results on the completeness of
von Neumann lattices. The practical significance of this formalism in the context of quantum
optics is also discussed.

1. Introduction

Coherent states form an overcomplete set of states in the Hilbert space. In fact it is well
known that they form a ‘highly overcomplete’ set in the sense that there are much smaller
subsets of coherent states which are also overcomplete. For example, it can be proved
using the Bargmann analytic representation [1], that if{zN } is a convergent sequence to
some pointz0 in the complex plane, then the corresponding coherent states{|zN 〉} form
an overcomplete set. A consequence of this is that coherent states on a line form an
overcomplete set, resolutions of the identity in terms of these states have recently been
studied [2–4]. Using them we can express an arbitrary state as a line integral of coherent
states.

It is therefore clear that knowing that a set of coherent states is overcomplete is not only
of theoretical interest; it is also of practical interest in the sense that we are encouraged
to search for resolutions of the identity which will make possible the expansion of an
arbitrary state in terms of these coherent states. Sometimes is not easy to find a resolution
of the identity and weaker concepts are also sufficient (for example the concept of frames
in wavelets). But it is clear that a prerequisite for going down that route is the question of
completeness.

A well known overcomplete set of coherent states is the von Neumann lattice [5, 6].
This is the set of coherent states{|S1/2(M+ iN)〉} whereM, N are integers andS is the area
of the lattice cell. It is well known that this set is overcomplete ifS 6 π and undercomplete
whenS > π [5]. The proof uses the Bargmann analytic representation where the growth
of a function is intimately related to the density of its zeros and to the completeness of
sequences of coherent states. In this paper we generalize these results. In many cases we
wish to work in a smaller space than the full Bargmann space. More specifically we consider
the space of functions with growth smaller or equal to a certain amount and find what the
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least density that a sequence of coherent states must have in order to be overcomplete. In
the process of solving this problem we interpret many of the deep ideas of the ‘theory of
entire functions, their growth and their zeros’, in the context of coherent states.

In section 2 we introduce the Bargmann functions and explain that their zeros imply the
orthogonality of the corresponding states with coherent states. In section 3 we discuss the
growth of Bargmann functions and give various examples of physical interest. In sections 4
and 5 we consider the space of all Bargmann functions with growth less than a certain
value and prove that a sequence of coherent states with density greater (smaller) than a
certain value is overcomplete (undercomplete). We also use Hadamard’s theorem to show
explicitly how we construct states which are orthogonal to a given sequence of coherent
states. In section 6 we consider states with arbitrary growth and study their statistical
properties (squeezing, antibunching, etc). We conclude in section 7 with a discussion of
our results.

2. Bargmann functions and their zeros

We consider a harmonic oscillator and the coherent states:

|z〉 = D(z)|0〉 = exp(− 1
2|z|2)

∞∑
N=0

zN(N !)−1/2|N〉 (1)

D(z) = exp[za† − z∗a] (2)

wherez is a complex number in the complex planeC andD(z) is the displacement operator.
For later purposes we also introduce the displaced number states

|N; z〉 = D(z)|N〉 = (a† − z∗)N
(N !)1/2

|z〉. (3)

For N = 0 the states|0; z〉 are simply the coherent states|z〉. Let |f 〉 be an arbitrary
(normalized) state

|f 〉 =
∞∑
N=0

fN |N〉
∞∑
N=0

|fN |2 = 1. (4)

We shall use the notation|f ∗〉 for the state

|f ∗〉 =
∞∑
N=0

f ∗N |N〉
∞∑
N=0

|fN |2 = 1. (5)

In the Bargmann representation the state|f 〉 is represented by the function

f (z) = exp( 1
2|z|2)〈z∗|f 〉 = exp( 1

2|z|2)〈f ∗|z〉 =
∞∑
N=0

fNz
N(N !)−1/2 (6)

which is analytic in the complex planeC. Using the resolution of the identity∫
dµ (z)|z〉〈z| = 1 (7)

dµ(z) = π−1 d2z (8)

we can easily prove that the scalar product of two states|f 〉, |g〉 can be expressed as

〈f |g〉 =
∫

[f (z)]∗g(z) exp(−|z|2)d2z

π
. (9)
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The creation and annihilation operators are represented as:

a = ∂z a† = z. (10)

We next point out that iff (z) is the Bargmann function of a state|f 〉 andA is a zero of
f (z) (i.e. f (A) = 0) then the coherent state|A〉 is orthogonal to|f ∗〉. We can show this
easily with the equation:

f (A) = exp( 1
2|A|2)〈f ∗|A〉 = 0. (11)

A more general result is that ifA is a zero off (z) with multiplicity M, then |f ∗〉 is
orthogonal to the firstM displaced number eigenstates{|N;A〉;N = 0, . . . , (M−1)}. This
can be seen from the equation:[

(∂z − A)N
(N !)1/2

f (z)

]
z=A
= exp

(
1

2
|A|2

)
〈f ∗| (a

† − A∗)N
(N !)1/2

|A〉 = 0. (12)

3. The growth of Bargmann functions

The growth of an analytic functionf (z) is characterized by the orderρ and the typeσ [7].
If M(R) is the maximum modulus off (z) for |z| = R, then

ρ = lim
R→∞

sup
ln lnM(R)

lnR
(13)

σ = lim
R→∞

sup
lnM(R)

Rρ
. (14)

We shall denote asH(ρ, σ ) the space of functions of an order not exceedingρ; and of a
type not exceedingσ if of order ρ. ClearlyH(ρ, σ ) is a subset ofH(ρ ′, σ ′) if ρ < ρ ′;
and also ifρ = ρ ′ andσ < σ ′. The sum or product of two entire functions has an order
(type) which is at most the larger of the two orders (types). Using equation (9) and the fact
that the Bargmann functions are normalizable, we conclude that the Bargmann space is a
subspace ofH(2, 1

2).
We consider various examples. The number eigenstate|N〉 is represented by the function

f (z) = zN(N !)−1/2 (15)

which is of order 0. In fact any superposition of a finite number of number eigenstates is
represented by a (finite) polynomial, which is of order 0.

The coherent state|A〉 is represented by the function

f (z) = exp[Az − 1
2|A|2] (16)

which is of order 1 and type|A|.
Squeezed states are defined as

|A; r, θ, λ〉 = S(r, θ, λ)|A〉 (17)

S(r, θ, λ) = exp[− 1
4re
−iθ (a†)2+ 1

4re
iθa2] exp[iλa†a]. (18)

Using the relation

〈z∗|A; r, θ, λ〉 = (1− |τ |2)1/4 exp[αz2+ βz + γ − 1
2|z|2] (19)

τ = − tanh( 1
2r)e

−iθ (20)

α = 1
2τ (21)

β = aeiλ(1− |τ |2)1/2 (22)

γ = − 1
2τ
∗A2e2iλ − 1

2|A|2. (23)
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We find that the Bargmann function is:

f (z) = exp[1
2|z|2]〈z∗|A; r, θ, λ〉 = (1− |τ |2)1/4 exp[αz2+ βz + γ ] (24)

which is of order 2 and typeσ = 1
2 tanh( 1

2r).
We also consider the negative binomial states (which are SU(1, 1) Perelomov coherent

states [8] in the harmonic oscillator context) given by [9]

|w〉 = (1− |w|2)k
∞∑
N=0

d(k,N)wN |N〉 |w| < 1 (25)

d(k,N) =
[

0(N + 2k)

0(N + 1)0(2k)

]1/2

k = 1
2, 1, 3

2, . . . (26)

The Bargmann function for these states is

f (z) =
∞∑
N=0

cNz
N (27)

cN = (1− |w|2)k d(k,N)wN

(N !)1/2
. (28)

The order and type of such a function, given in the form of a series, can be found by using
a theorem (e.g. theorem 2, in chapter 1 of [7]) that states

ρ = lim
N→∞

sup
N lnN

[− ln |cN |] (29)

(σeρ)1/ρ = lim
N→∞

sup[N1/ρ |cN |1/N ]. (30)

Using these equations we find thatρ = 2 andσ = 1
2|w|2.

The above examples are of great practical importance in quantum optics, and they all
have orderρ which is an integer. It should be stressed thatρ can take all values between
0 and 2 (in fact it can be greater than 2 but then the function is not normalizable). We
show this explicitly by giving an example of a state which has the Bargmann function with
a given orderρ and given typeσ . It is the state:

|ρ, σ 〉 =
∞∑
N=0

fN |N〉 (31)

fN = KeiθN σN/ρ(N !)1/2

0(N
ρ
+ 1)

(32)

whereK is a normalization constant given by:

K =
[ ∞∑
N=0

σ 2N/ρN !

[0(N
ρ
+ 1)]2

]− 1
2

(33)

and {θN } are phases. The normalization constant is finite when 06 ρ < 2; and also when
ρ = 2 andσ < 1

2. Inserting equation (32) into equation (6) we find the Bargmann function
for the states (31) and using equations (29) and (30) we show that it is indeed of order
ρ and typeσ . In the special caseθN = Nθ the Bargmann function is given in terms of
the Mittag–Leffler function [10, p 206] asKE1/ρ(eiθσ 1/ρz). In the special caseρ = 1 and
θN = Nθ the states (31) reduce to the usual coherent states of equation (1) withz = σeiθ .
For ρ = 1 and general phases{θN } we obtain the generalized coherent states studied in
[11].
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4. Completeness of a sequence of coherent states inH(ρ,σ)

Let A1, . . . , AN, . . . be a sequence of complex numbers such that

0< |A1| 6 |A2| 6 |A3| 6 · · · (34)

lim
N→∞

|AN | = ∞. (35)

The convergence exponentρ1 of this sequence is the infimum of positive numbersλ for
which

∞∑
N=1

|AN |−λ <∞ (36)

i.e. the series converges. Letn(R) be the number of terms of this sequence enclosed within
the circle|z| < R. It is known [7] that an alternative equivalent definition of the convergence
exponentρ1 is:

ρ1 = lim
R→∞

sup
ln n(R)

lnR
. (37)

In other words, the number of terms of the sequence within a very large circle of radiusR,
is proportional toRρ1. For a given convergence exponentρ1 a more refined description of
the density of the set{AN } is done with the numbers

1 = lim
R→∞

sup
n(R)

Rρ1
(38)

δ = lim
R→∞

inf
n(R)

Rρ1
(39)

which we call upper and lower density, correspondingly. These two quantities are different
in ‘oscillatory’ cases. When the (ordinary) limit exists,δ = 1. The quantitiesρ1,1, δ

characterize the density of the sequence{AN }.
We now consider the set of coherent states{|AN 〉} and examine its completeness with

respect to functions in the spaceH(ρ, σ ). We shall say that the density of this sequence of
coherent states is(ρ1, δ) if the sequence of complex numbers{AN } has convergent exponent
(ρ1) and lower densityδ. We shall also say that the density of this sequence of coherent
states is greater (smaller) than(ρ1, δ) if the sequence of complex numbers{AN } has a
convergent exponent greater (smaller) thanρ1; or if it has a convergent exponent equal to
ρ1 but has a lower density greater (smaller) thanδ.

Incompleteness of a set of coherent states{|AN 〉} with respect to the spaceH(ρ, σ ) is
intimately connected to the existence of a Bargmann functionf (z) in H(ρ, σ ) with zeros
at all {AN }. This is because the existence of such a function implies the existence of a state
that is orthogonal to all the coherent states{|AN 〉}.

It is known that the convergent exponent of the zeros of an entire function does not
exceed its order [7]. Therefore, for functions inH(ρ, σ ) (with any σ ) any sequence of
coherent states{|AN 〉} with a convergence exponent greater thanρ, is at least complete. In
fact it is overcomplete because the same conclusion can be reached even if we leave out
the firstK coherent states (whereK is any finite number).

We next consider a set of coherent states with convergent exponent equal toρ and
upper and lower densities1 andδ, correspondingly. Using theorem (9.1.1) in Boas [7] we
conclude that this set is also overcomplete if either of the following relations is satisfied:

σρ 6 δ (40)

eσρ 6 1. (41)
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We therefore conclude that for functions inH(ρ, σ ) any sequence of coherent states with a
density greater than(ρ, σρ) is overcomplete. In the next section we will show that when the
density is smaller than(ρ, σρ) the corresponding set of coherent states is undercomplete.

5. Hadamard’s theorem and its physical interpretation in the context of coherent
states

Hadamard’s theorem states that an entire function of orderρ can be factorized as

f (z) = P(z) exp[Qq(z)] (42)

where

P(z) = zm
∞∏
N=1

E(AN, p) (43)

E(AN, 0) = 1− z

AN
(44)

E(AN, p) =
(

1− z

AN

)
exp

[
z

AN
+ z2

2A2
N

+ · · · + zp

pA
p

N

]
p > 1 (45)

Qq(z) is a polynomial of degreeq andp is an integer. The maximum of(p, q) is called
genus off (z) and does not exceed the orderρ. The{AN } are clearly zeros of this function
and it is known [7] that their convergent exponent does not exceed the orderρ; and if equal
to ρ then the lower and upper densities satisfy the relations:

σρ > δ (46)

eσρ > 1. (47)

For Bargmann functionsρ 6 2 and thereforep andq can only take the values 0, 1, 2. In
order to interpret this theorem in the context of coherent states we first point out that when
q takes the values 0, 1, 2 the exp[Qq(z)] represents (up to a normalization constant) the
vacuum state, a coherent state and a squeezed state (see equations (16) and (19)). Using
the notation|Qq〉 for the state represented by the Bargmann function exp[Qq(z)] we have

|Q0〉 = |0〉 (48)

|Q1〉 = |A〉 (49)

|Q2〉 = |A; r, θ, λ〉. (50)

Using equation (10) we express theE-factors in terms of creation operators:

Ê(AN, 0) = 1− a†

AN
(51)

Ê(AN, 1) =
[

1− a†

AN

]
exp

[
a†

AN

]
(52)

Ê(AN, 2) =
[

1− a†

AN

]
exp

[
a†

AN
+ (a

†)2

2A2
N

]
(53)

and thezm as the operator(a†)m. Note that all these operators commute with each other.
Using Hadamard’s theorem we can now prove that any state can be expressed as

|f 〉 = (a†)m
∞∏
N=1

Ê(AN, p)|Qq〉. (54)
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Thenq, p take the values 0, 1, 2 for states inH(2, 1
2). If we are interested in a subspace

H(ρ, σ ) then if 16 ρ < 2 theq, p take the values 0, 1; and if 06 ρ < 1 thenq = p = 0.
The state |f ∗〉 is perpendicular to all coherent states{|AN 〉} whose density, as

we explained, is smaller than(ρ, σρ). This proves the incompleteness of this set of
coherent states inH(ρ, σ ). We therefore conclude thatfor functions inH(ρ, σ ) any
sequence of coherent states with a density greater (smaller) than(ρ, σρ) is overcomplete
(undercomplete).

In the special case of the full Bargmann spaceρ = 2 andσ = 1
2 and therefore the

(ρ, σρ) is (2, 1). The von Neumann lattice of coherent states{|S1/2(M + iN)〉} whereM,
N are integers andS is the area of the lattice cell, has convergence exponentρ1 = 2 and
lower and upper densityδ = 1 = S/π . It is clear that in this special case our general
results reduce to the well known results on von Neumann lattices.

We would also like to point out that a sequence of coherent states with density equal
to (ρ, σρ) can be overcomplete or undercomplete. An example is the von Neumann lattice
with S = π . If we consider the full lattice it is known to be overcomplete by one state [5].
However, we can consider the same lattice with a finite number of coherent states added to
it; or a finite number of coherent states subtracted from it. The fact that we add or subtract
a finite number of coherent states does not change its density(ρ1, δ). This ‘enlarged’ or
‘truncated’ von Neumann lattice is now overcomplete or undercomplete by a finite number
of states.

6. Quantum statistical properties of states with growth(ρ,σ)

There has been a lot of interest in literature on quantum optics on states that exhibit squeezing
and antibunching. For this reason we study here the statistical and uncertainty properties of
the states (31). We calculate the average number of photons

〈N〉 =
∞∑
N=0

N |fN |2 (55)

the second-order correlation

g(2) = 〈(a
†)2a2〉
〈a†a〉2 =

〈N2〉 − 〈N〉
〈N〉2 (56)

the uncertainty

1x = [〈x2〉 − 〈x〉2]1/2 (57)

〈xi〉 =
∑
N,M

fNf
∗
M〈N |

(
a + a†

21/2

)i
|M〉 (58)

and the uncertainty product1x1p. For simplicity we consider the caseθN = 0. The infinite
sums have been truncated atN = 32; and the region ofρ has been limited to 0.2< ρ < 2.
Larger values ofN or smaller values ofρ require the evaluation of the gamma function
at large values and this leads to numerical difficulties. We have checked that the average
number of photons〈N〉 in all the cases that we have considered is much less than 32 so
this is a good approximation. We should also point out that larger values ofσ than those
considered, lead to average numbers of photons close to 32 (especially forρ near 2) and
therefore to inaccurate numerical results.

Numerical results are presented in figures 1–4. It is seen that forρ less than 1.6 the
uncertainty product1x1p takes values very close to12 (a typical value is 0.5001). The
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Figure 1. The average number of photons〈N〉 for the states (31), as a function ofρ for (A)
σ = 0.3; and (B)σ = 0.6.

Figure 2. g(2) for the states (31), as a function ofρ for (A) σ = 0.3; and (B)σ = 0.6.

uncertainty1x shows some modest squeezing (i.e.1x < 2−1/2) aroundρ = 0.7. Theg(2)

shows strong antibunching (i.e.g(2) < 1) for ρ less than 1.

7. Discussion

The theory of entire functions and their zeros, has important implications on the theory of
coherent states; on the related area of frames and wavelets [12]; and also on other areas of
physics (e.g. [13]). In this paper we have shown how the growth of a Bargmann function
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Figure 3. 1x1p for the states (31), as a function ofρ for (A) σ = 0.3; and (B)σ = 0.6.

Figure 4. 1x for the states (31), as a function ofρ for (A) σ = 0.3; and (B)σ = 0.6.

f (z) is related to its zeros; and to coherent states which are orthogonal to the corresponding
state|f ∗〉. Using Hadamard’s theorem we have constructed explicitly in equation (54) a
state orthogonal to a given sequence of coherent states. We have also shown that with
respect to the spaceH(ρ, σ ) a sequence of coherent states with density greater (smaller)
than(ρ, σρ) is overcomplete (undercomplete).

On the more applied side we have examined the growth of various states of practical
interest (coherent states, squeezed states, etc). We have also considered the states (31) of
growth (ρ, σ ) and studied their statistical properties (squeezing, antibunching, etc).

Another potential application of the ideas of this paper is in the area of Gabor transforms
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in signal processing. Gabor [14] and Ville [15] initiated the so-called time-frequency
methods in signal processing (the analogue of phase space methods in quantum mechanics).
He used Gaussian signals (the analogue of coherent states) on a von Neumann lattice as
a basis in the space of signals (for more recent work see [16] and references therein). In
this line of research, on many occasions we might be interested only in signals within a
subspace such asH(ρ, σ ). The work of this paper gives the least density of a basis of
Gaussians for these signals. Also, when we use a basis of Gaussians which is less dense
than a von Neumann lattice, we want to know what type of signals this basis is not able
to detect (i.e. which signals are orthogonal to the basis). Hadamard’s theorem answers this
question precisely.

In conclusion, we believe that the results of this paper provide a bridge between the
theory of growth and zeros of entire functions, and the theory of coherent states.
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